n-PROPYL MERCAPTAN

1. PERFORMANCE

1) Measuring range Number of pump strokes Sampling time S10 Detectable limit S10 Measuring range S10 Measuring range S10 Measuring range S10 Measuring range S10.5-5 ppm $1/2(50m\ell)$ $1/2(50m\ell)$ 1/2

4) Shelf life : 2 years 5) Operating temperature : $0 \sim 40 \,^{\circ}\text{C}$

6) Reading : The tube scale is calibrate based on Methyl mercaptan at 1 pump stroke and

the tube has the same sensitivity for n-Propyl mercaptan.

7) Colour change : Pale yellow→Pink

2. RELATIVE STANDARD DEVIATION

RSD-low: 10% RSD-mid.: 5% RSD-high: 5%

3. CHEMICAL REACTION

By reacting with Mercuric chloride, Hydrogen chloride is produced and PH indicator is discoloured. RSH + HgCI₂→RS(HgCI) + HCI

4. CALIBRATION OF THE TUBE

PERMEATION TUBE METHOD

5. INTERFERENCE AND CROSS SENSITIVITY

Substance	Interference	Coexistence
Arsine	Similar stain is produced.	Higher readings are given.
Hydrogen selenide	"	"
Phosphine	"	"
Hydrogen sulphide	"	"
Hydrogen cyanide	Whole reagent is changed to Red.	"
Sulphur dioxide		Whole reagent is changed to Pale red,but Pink stain indicates Mercaptans conc.

(NOTE)

In case of 1/2 pump strokes, following formula is available for the actual concentration.

Actual concentration = $2 \times$ Reading value