PHOSPHINE

1. PERFORMANCE

1) Measuring range 0.05-1.0 ppm 0.05-1.0 ppm Number of pump strokes 0.1-2.0 ppm 0.05-1.0 ppm 0.05-1.

4) Shelf life : 2 years 5) Operating temperature : $0 \sim 40 \, ^{\circ}\mathrm{C}$

6) Reading : Direct reading from the scale calibrated by 1 pump stroke

7) Colour change : Pale yellow→Pink

2. RELATIVE STANDARD DEVIATION

RSD-low: 10% RSD-mid.: 10% RSD-high: 5%

3. CHEMICAL REACTION

By reacting with Mercuric chloride (II), Hydrogen chloride is produced and PH indicator is discoloured. $PH_3 + 3HgCI_2 \rightarrow P(HgCI)_3 + HCI$

4. CALIBRATION OF THE TUBE

STANDARD GAS CYLINDER METHOD

5. INTERFERENCE AND CROSS SENSITIVITY

Substance	Interference	Coexistence
Hydrogen sulphide	Similar stain is produced.	Higher readings are given.
Hydrogen selenide	"	"
Mercaptans	"	"
Arsine	"	"
Hydrogen cyanide	Whole reagent is changed to Red.	"
Sulphur dioxide	"	Whole reagent is changed to Pale red, but Purplish red stain indicates Phosphine concentration.

(NOTE)

When the concentration is below 0.5 ppm, 2 pump strokes can be used to determine the lower concentration with the following formula.

Actual concentration = $1/2 \times$ Reading value